### THE FUTURE OF DATA EXFILTRATION & MALICIOUS COMMUNICATION

Steffen Wendzel http://www.wendzel.de



- Steffen Wendzel
  - PhD student @University of Hagen
  - Researcher @Augsburg University of Applied Sciences
  - Author of four CS-related books

http://www.wendzel.de | Twitter: @cdp\_xe



#### **Prediction I**

# Malware communication will become stealthy and adaptive.



#### **Prediction II**

# We will find **new ways for data exfiltration** ...



# Part I

The hiding techniques we already know ...

# ... and what research did to counter network covert channels.



#### Requirement

SHÂRE VITH CAR

Hide communication between sender and receiver, i.e., provide a communication that raises as few attention as possible

... can be used by journalists to transfer illicit information but also by malware



## Typical Techniques for Covert Channels

- Packet Timings
- Packet Order
- Find something to piggyback (unused/redundant fields in ICMP, HTTP, etc.)
- We can do that since the 1980's!



# Typical Techniques for Covert Channels

 Many of the available hiding techniques & programs implement crapto channels\*.

- "HTTP/8.9"
- Magic Byte=0x....





STEFFEN WENDZEL /// THE FUTURE OF DATA EXFILTRATION & MALICIOUS COMMUNICATION

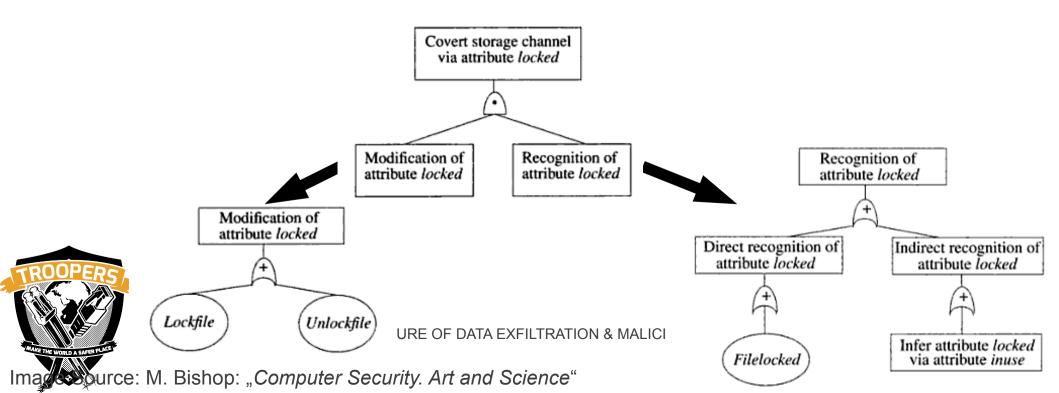
\*adopted from "craptography", i.e., crappy crypto implementations.

#### Shared Resource Matrix

• Kemmerer'83

|           | Operation A |            |            |
|-----------|-------------|------------|------------|
| Attribute | Op1         | Op2,Guard1 | Op2,Guard2 |
| а         | R           | -          | -          |
| b         | -           | М          | М          |
| С         | -           | R          | -          |
| User-In   | R           | R          | R          |
| User-Out  | М           | М          | М          |




## **Covert Flow Trees**

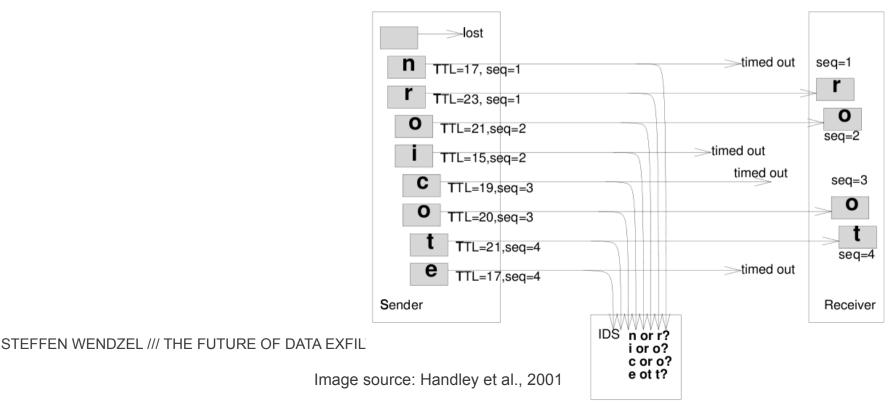
```
2 procedure Lockfile(f: file);
                                                                  (Kemmerer/Porras'91)
3 begin
     if not f.locked and empty(f.inuse) then
 4
 5
       f.locked := true
6 end;
7
 8
9 procedure Unlockfile(f: file);
10 begin
     if f.locked then
11
       f.locked := false
12
13 end;
                                                            Lockfile
                                                                            Unlockfile
                                                                                            Filelocked
14
15
                                                            locked, inuse
                                            reference
                                                                            locked
                                                                                            locked
16 function Filelocked(f: file): boolean:
17 begin
     Filelocked := f.locked:
                                                            locked
                                                                            locked
18
                                            modify
19 end;
                                            return
                                                                                            locked
```



#### **Covert Flow Trees**

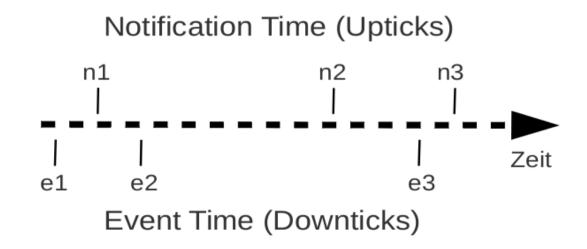
|           | Lockfile     | Unlockfile | Filelocked |
|-----------|--------------|------------|------------|
| reference | locked,inuse | locked     | locked     |
| modify    | locked       | locked     | -          |
| return    | -            | -          | locked     |




#### The Pump and Similar Approaches






# **Traffic Normalization**

- Clear/Unify/Modify selected areas in network packet headers
- Cold Start Problem
- Inconsistent TCP retransmissions



# Fuzzy Time

• 1991 (VAX Security Kernel)





# Other Approaches

- Statistical approaches
- Machine learning
- Various active wardens
- Business process evaluation
- Spurious processes approach
- Code modifications to prevent covert channels based on timing leaks
- ... and quite many other academic approaches (cf. my latest book)



# Summary (pt. 1)

#### Many means exist to

... embed hidden information into network packets

... to detect, limit, and prevent such embeddings

... some of them are ~30y old but still highly valuable!

... but we cannot detect all techniques.





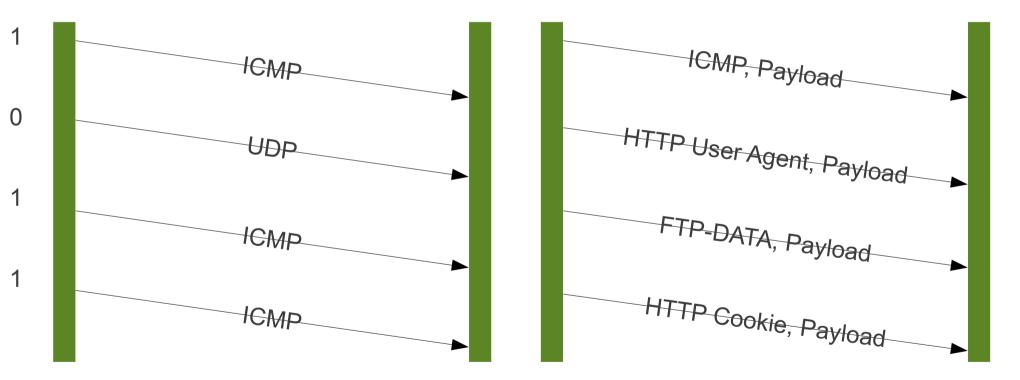
### Part II

#### Novel Approaches for Network Covert Storage Channels

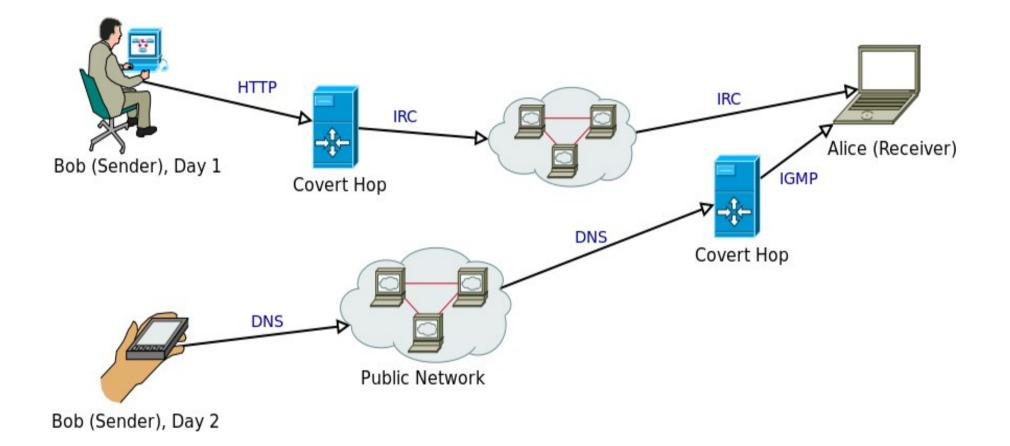
[selected aspects of a thesis]



# **Related Work**


- Existing CC-internal Control Protocols (Ray/Mishra, pingtunnel)
- Natural Selection for Network Protocols (Li et al.)
- Adaptive Network Covert Channels (Yarochkin et al.)
- Covert channels optimized for raising low attention using CC-internal Control Protocols
  - ... and Protocol Hopping Covert Channels
  - ... able to bypass normalizers.
- Protocol Channels / Protocol Hopping Covert Channels




# Protocol Channels & Protocol Hopping Covert Channels

#### Protocol Channel:

#### **Protocol Hopping CC:**





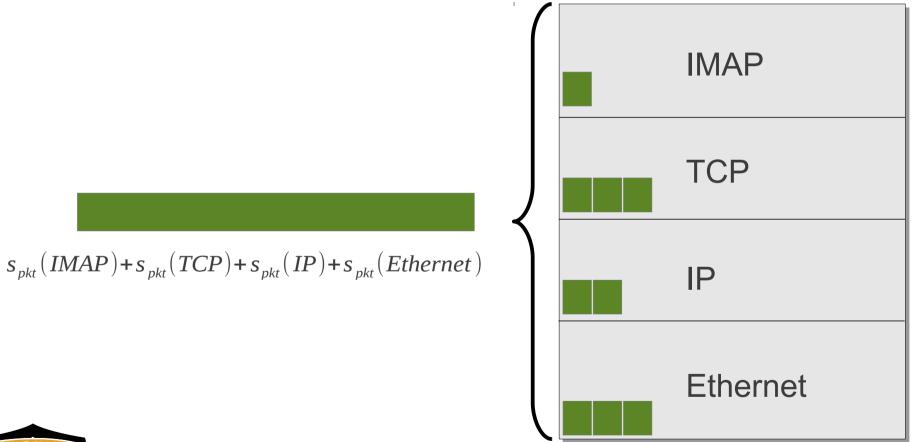




# Features

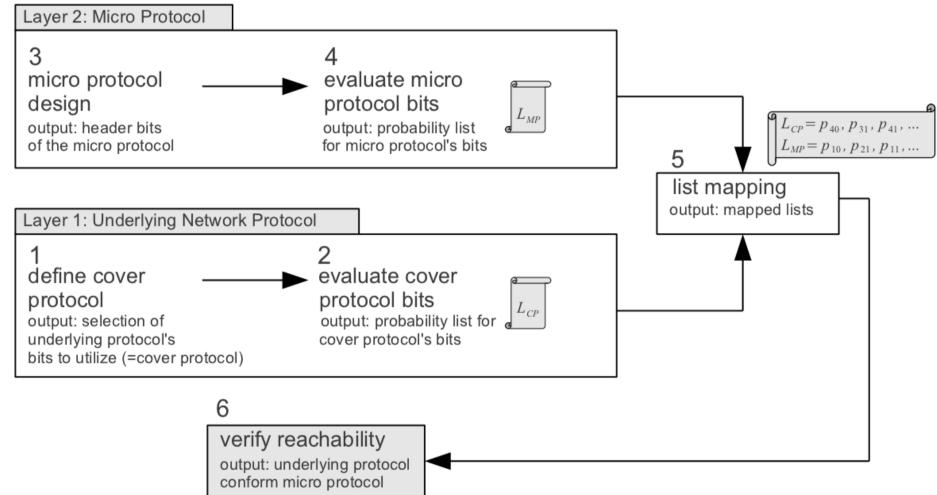
- Protocol Switching
  - Adaptive Covert Channels
  - Network Environment Learning Phase (NEL)
  - Mobile Environments
- Version-dependent protocol sets
  - Step-by-step Upgradability
- Space-efficiency and dynamic headers




# Terminology

- **Terminology** as a means to provide finer distinctions between different points of view.
- Underlying Protocol
  - e.g. IPv4, TCP, ICMPv4, IPv6, ...
- Cover Protocol
  - utilized area within the underlying protocol
  - e.g., 2 least significant bits of TTL + DF flag
- Micro Protocol
  - control protocol placed within cover protocol




shares cover protocol space with the covert channel's payload

# **Combining Multiple Layers**





# Micro Prot. Engineering Approach





# Status Update Approach

- We tried to adopt existing protocol engineering means
- IPv6 "Next Header", IP "Options"
- Compressed SLIP (CSLIP)
- Status Updates are is like a mix of "Next Header", "IP Options", and "CSLIP".



# Status Updates

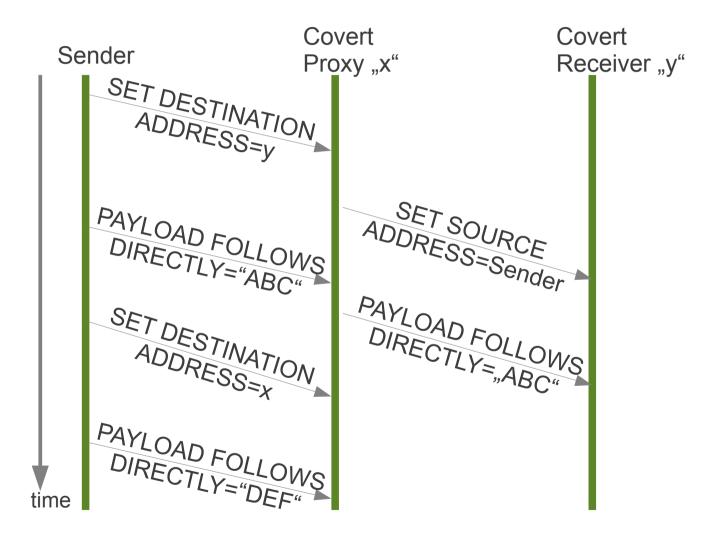
- We link a communication between two CC peers to *statuses*.
- A connection can comprise different statuses, e.g.:
  - Source address
  - Destination address
  - Transaction state
- Status Updates indicate the update of a status.



# Status Updates

- One status update comprises
  - A "Type of Update" value
  - The value for the update
- Therefore, sender and receiver share a ToU table, e.g.:
  - 00 SET SOURCE ADDRESS
  - 01 SET DESTINATION ADDRESS
  - 10 END OF UPDATES
  - 11 PAYLOAD FOLLOWS DIRECTLY




#### **Status Updates**

• For instance, to change the source address of a connection (e.g., on a proxy):





# **Example: Packet Forwarding**





# **Combining ToUs to Sequences**

| 00 | New<br>Source<br>Address | 01 | New<br>Destination<br>Address | 10 | / unused / |
|----|--------------------------|----|-------------------------------|----|------------|
|----|--------------------------|----|-------------------------------|----|------------|



# Re-Design of Ray/Mishra'08

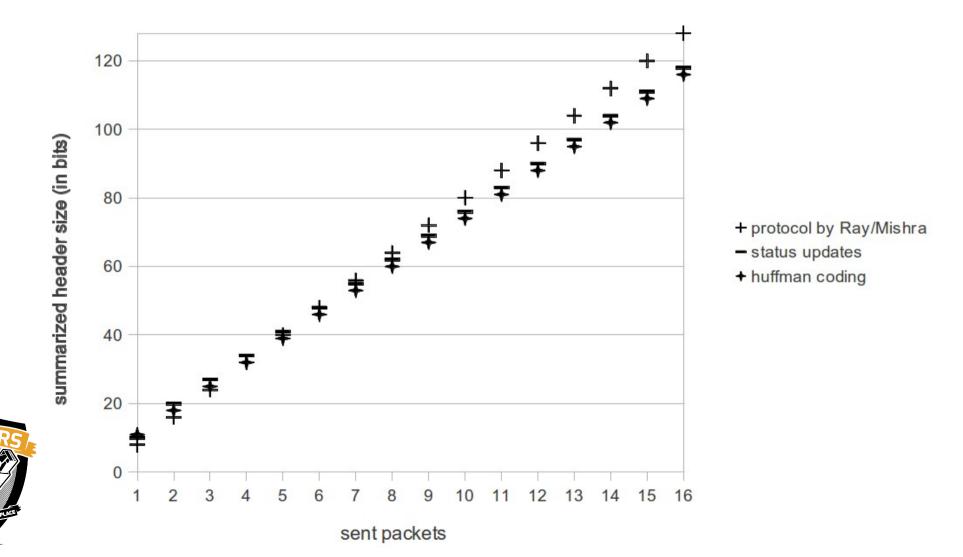
 Designed a status update-based version of a CC micro protocol developed by Ray and Mishra.

a) unmodified header (8 bits):

| - | data ack<br>flag flag | - | start<br>flag |  |  |
|---|-----------------------|---|---------------|--|--|
|---|-----------------------|---|---------------|--|--|

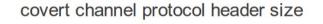
b) re-designed header, default ToU (7 bits):

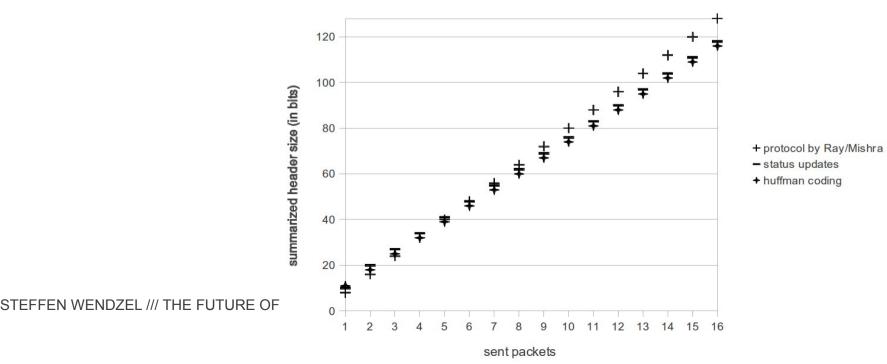
| ToU | _ | data<br>flag | _ | no. |
|-----|---|--------------|---|-----|
|     |   |              |   |     |


c) re-designed header, start/stop ToU (3 bits):

| ToU | start | end  |
|-----|-------|------|
|     | flag  | flag |




#### Re-Design of Ray/Mishra'08


covert channel protocol header size



# Re-Design of Ray/Mishra'08

- Initial connection inefficiency problem
  - Many ToUs are required to initially configure a connection
    - ... and thus require more space than a normal header
  - SU perform better if a transaction requires >= 5 packets







# Dynamic Routing in CC Overlays

- CC networks are overlay networks
- Work of P. Backs
- Similar to Ad-Hoc networks (changing components, changing topology)
- Existing approach for dynamic routing in steganographic networks was presented by Szczypiorski et al. and utilized the random-walk algorithm.



# Requirements for CC Routing

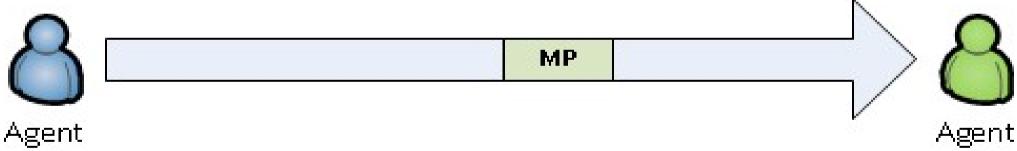
- Routing overhead should be small
  - Status updates
- Must be capable to adapt quickly to topology changes since underlay network can change at any time.
  - Only small routing overhead should be produced for propagating updates.
- Overlay network addresses can differ to underlay addresses and a routing approach must support overlay addresses.



# Our Approach

- Sender is responsible for route plotting (source routing).
- We implemented optimized link state routing (OLSR)
  - OLSR was designed for mobile Ad-Hoc networks
  - ... with the goal of a small routing overhead
  - Status Update-based realization to achieve a minimal micro protocol overhead




## Dynamic Routing in CC Overlays

- Introducing Quality of Covertness
- Extendable Architecture
- Dynamic <u>Cover</u> Protocol Switching
  - Protocol Hopping Covert Channels
- Network Environment Learning Phase
  - Peers determine possible communication options between each other



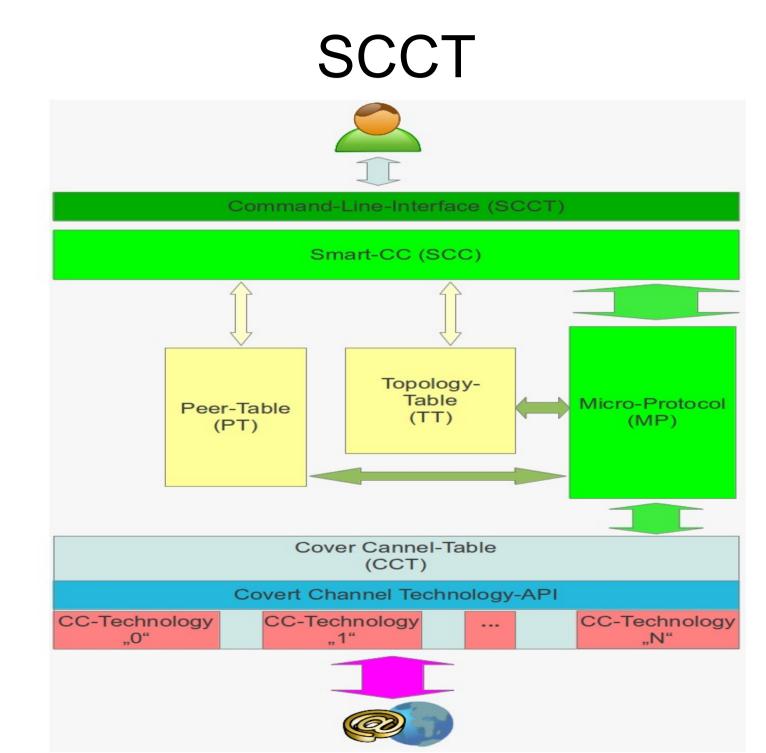






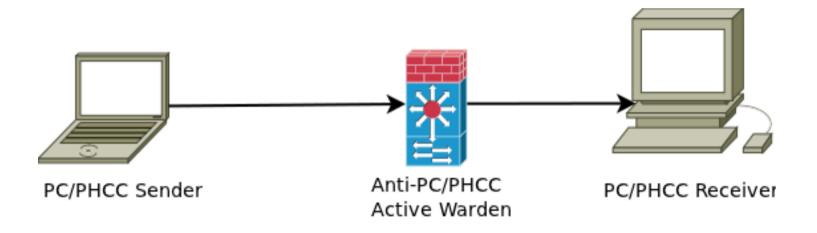
egen A1

Drones do not take part on routing decisions and are never a routing path's destination.




Drones are also not aware of a covert communication.

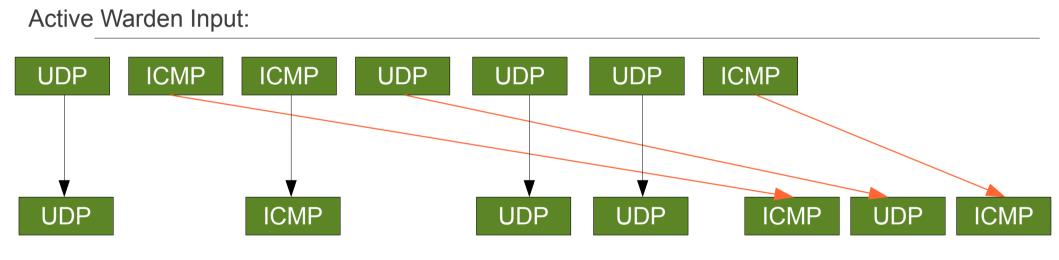
# Agents and Drones for Overlay Routing


- Our approach comprises a CC network topology table
  - A graph of the paths between peers as well as their capabilities (supported CC techniques)
  - Is propagated between the peers
  - New ToUs for routing propagation were required:

| ſ | Type of Update | Meaning                                           |  |  |
|---|----------------|---------------------------------------------------|--|--|
| ĺ | REQUEST_PT_TT  | Used by a peer to request the full peer table and |  |  |
|   |                | topology table while bootstrapping.               |  |  |
| ĺ | RESPONSE_PT_TT | Response to REQUEST_PT_TT.                        |  |  |
| ſ | TT_LIST        | A sequence of edges of the topology graph.        |  |  |
|   |                | Send on topology changes. Propagated according    |  |  |
|   |                | to MPRsel.                                        |  |  |
|   | PT_ENTRY       | A new or updated entry to the peer table. Send    |  |  |
|   |                | when a peer crashes, goes off, or joins the       |  |  |
|   |                | network, or changes CC capabilities. Propagated   |  |  |
|   |                | according to MPRsel.                              |  |  |



### What can we do to counter PSCCs?

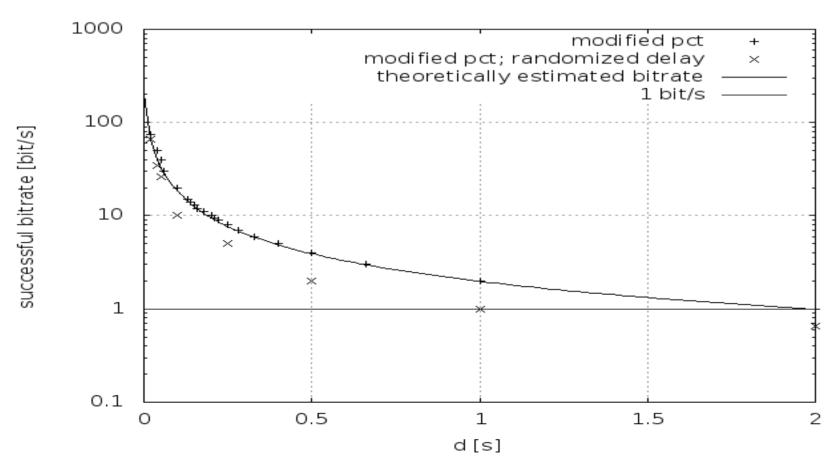

- By introducing delays on protocol switches
- PoC code based on delay-net/IPQueue and iptables





#### Example

- Protocol Channel based on ICMP (1) & UDP (0)
- Message "0110001" with high delay (e.g. 1s)






#### Output: U,I,U,U,I,U,I or 0100101

#### Results

- Pretty useful to counter **protocol channels**!
- Can counter **protocol hopping covert channels** without sequence numbers in their micro protocols!



# Summary (pt. 2)

- Improved CCs with protocol hopping
- CC overlays with dynamic routing capability
  - Agents and Drones
  - Upgradable Infrastructure
  - Mobile Access
- Internal control protocols (micro protocols)
  - Optimized for a low-attention raising operation
  - Utilization of multiple layers for cover protocols
- Active warden to counter protocol switches



### Part III

#### Data Leakage:

#### Covert and Side Channels in Building Automation Systems



### Side Channels in BAS

- Side channels are covert channels without intentional sender
- A side channel in a BAS leaks information about events taking place within a building
- Examples:
  - Employee uses a side channel to detect the presence of his boss in his office in order to steal a document.
  - Observing healthiness / Ambient Assisted Living

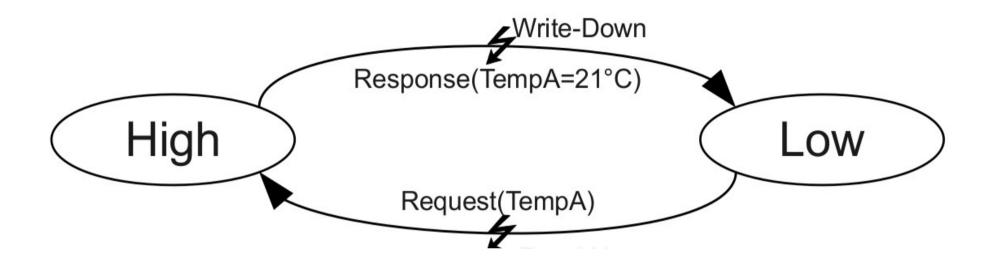
| Тур | Bezeichnung      | Standort          | Status  | Aktion        |
|-----|------------------|-------------------|---------|---------------|
| ٩,  | tmpr             | HSA-Fakl / J2.12a | 24.4 °C | 💴 父           |
| ٩,  | 1_ch1            | HSA-Fakl / J2.12a | 68 W    | 💴 💢           |
| ٩,  | 1_ch2            | HSA-Fakl / J2.12a | 34 W    | 💴 💆           |
| ۹,  | 1_ch3            | HSA-Fakl / J2.12a | 23 W    | <b>20</b>     |
| 1   | Zimmertemperatur | HSA-Fakl / J2.12a | 23.6 °C | 💴 💆           |
| ٩   | Fenster          | HSA-Fakl / J2.12a | zu      | \varTheta 🔤 🔯 |

## **Covert Channels in BAS**

Enterprise network could be highly protected

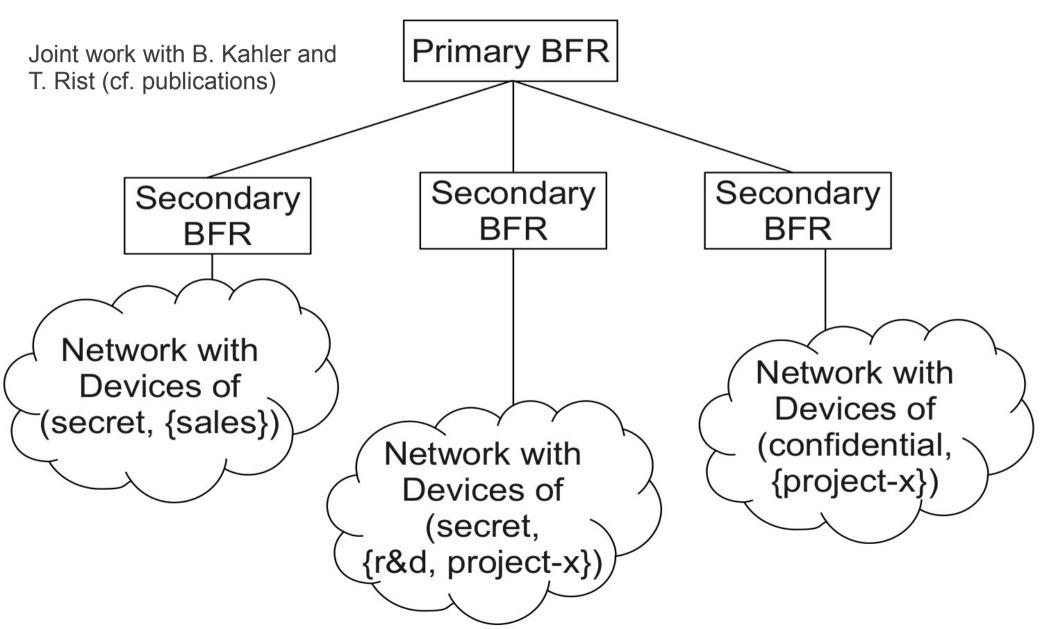
 $\rightarrow$  data leakage will be difficult

Solution:

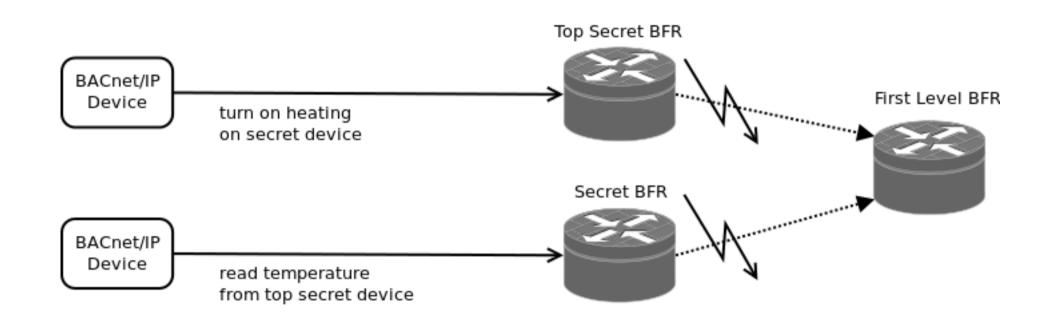

Exfiltrate confidential information using a **covert channel** (e.g., BAS broadcasting).

The receiver can either be connected to the BA network or can eavesdrop a tunneled BA connection between multiple buildings.

e.g., BACnet/IP (encapsulated in UDP)




#### **BACnet Protection**






#### Introducing MLS using the Open Source BACnet Firewall Router



#### MLS+BFR = Protection!





# Summary (pt. 3)

- We presented the first **side** channels and **covert** channels in BAS, and especially in BACnet.
- We presented a means to protect BACnet environments based on the **BACnet Firewall Router**.
  - ... not really stable,
  - ... bad documentation,
  - ... over-engineered (configurable via "stacks").
  - We need a stable and usable BACnet firewall!
    - Any volunteers?



#### What can we conclude?



# There are various means to establish covert channels and various (theoretical) means to counter covert channels.



# Novel approaches enable covert channels to become pretty valuable for malware ...

# ... but *should* become valuable for the "good guys".



# Covert (and Side) Channels exist in Building Automation Systems ...

... but can be prevented.



#### However, the important thing is ...



#### You can

... enable covert channels to become useful in practice (journalists).
... create real systems to counter the botnets of the future.







#### **Related Publications**

- Books:
  - Steffen Wendzel: Tunnel und verdeckte Kanäle im Netz, Springer-Vieweg, 2012. (in German)
- Scientific Papers (Selection):
  - Steffen Wendzel, Jörg Keller: Preventing Protocol Switching Covert Channels, In: International Journal On Advances in Security, vol. 5 no. 3&4, pp. 81-93, 2012.
  - Steffen Wendzel, Benjamin Kahler, Thomas Rist: Covert Channels and their Prevention in Building Automation Protocols -- A Prototype Exemplified Using BACnet, in Proc. 2nd Workshop on Security of Systems and Software Resiliency, pp. 731-736, Besançon, France, IEEE, 2012.
  - Steffen Wendzel, Sebastian Zander: Detecting Protocol Switching Covert Channels, 37th IEEE Conf. on Local Computer Networks (LCN), pp. 280-283, Clearwater, Florida, IEEE, 2012.
  - Steffen Wendzel, Jörg Keller: Systematic Engineering of Control Protocols for Covert Channels, In Proc. 13th Joint IFIP TC6 and TC11 Conference on Communications and Multimedia Security (CMS 2012), LNCS 7394, pp. 131-144, Canterbury, Springer, 2012.
  - Steffen Wendzel: Covert and Side Channels in Buildings and the Prototype of a Building-aware Active Warden, First IEEE International Workshop on Security and Forensics in Communication Systems (SFCS 2012) of the 2012 IEEE ICC, pp. 6753-6758, Ottawa, Canada, IEEE, 2012.
  - Steffen Wendzel, Jörg Keller: Low-attention forwarding for mobile network covert channels, in Proc. 12th Conference on Communications and Multimedia Security (CMS 2011), IFIP, LNCS vol. 7025, pp. 122-133, Ghent, Belgium, Springer, 2011.
  - More available here: http://www.wendzel.de/publications/index.html
- Professional Articles:

Benjamin Kahler, Steffen Wendzel: How to own a Building? Wardriving gegen die Gebäude-Automation, in Proc. 20. DFN CEWorkshop ``Sicherheit in vernetzten Systemen", pp. H1-H13, 2013. (in German)

