
Steffen Wendzel1

vstt [Very Strange Tunneling Tool]
documentation

1steffenwendzel -at- gmx -dot- net, www.wendzel.de

CONTENTS 2

Contents

1 Disclaimer 3

2 Introduction 3

3 How to use it? 3

4 Examples 4

4.1 Example 1 (without a TCP connection) . 4

4.2 Example 2 (tunneling a SSH connection) . 5

5 Protocols 6

5.1 none . 6

5.2 POP3 . 6

5.3 ICMP . 6

6 Comments, Feedback 6

1 DISCLAIMER 3

1 Disclaimer

This tool is for legal purposes only! Please also read the LICENSE file for license details.

2 Introduction

vstt is a tunneling tool (primary for TCP connections). It can send your data via different
protocols. Please send your patches if you port it to new systems or if you fixed a bug.

Currently tested systems are:

• Linux 2.6.x (i386 or amd64)

• OpenBSD 3.x to 4.0-current (i386 and amd64)

• SHOULD work too: FreeBSD, NetBSD and Solaris (need a Makefile modification)

vstt can tunnel your data via the following protocols:

• NONE (a pseudo protocol) - 99% done

• ICMP - 95% done

• POP3 - 90% done

• DNS - 5% done (only stub)

• SUNRPC - 0% done

• LDAP - 0% done

You can use different protocol connections between vstt hosts. Here is an example network
using three different vstt tunnels:

Client Destination
| |
^ ^

Host1 |-----| Host2 |------| Host3 |----| Host4
DNS DNS LDAP LDAP POP3 POP3

In this scenario, Host2 and Host3 are vstt gateways.

3 How to use it?

You can use vstt with local FIFOs or with TCP sockets you can connect to.

It is very simple to create tunnels with vstt: it works localy with pipes. You can send data into
pipes and you can read data from pipes.

vstt has two binarys (to make it possible to create gateways) that make use of the following
FIFOs in /tmp:

binary name | input fifo | output fifo
--
vstt | /tmp/.vstt_send2peer | /tmp/.vstt_recvfpeer
vstt2 | /tmp/.vstt_send2peer2| /tmp/.vstt_recvfpeer2

You can send data into the connection by writing data into the input fifo and you can read
received data from the peer via reading from the output fifo.

Q: But aehmmm.... I want to use sockets because my TCP app
(Telnet or SSH for example) uses TCP and not FIFOs.

A: No problem: you have to use the s2f tool included in the
code -- it bindes a TCP socket to a FIFO!

4 EXAMPLES 4

4 Examples

Note: vstt normaly produces one ’connection refused’ error a second if the other peer is not
already available. You do not need to take care about that.

4.1 Example 1 (without a TCP connection)

Let us create a simple POP3 tunnel using vstt on a localhost. We want to send a file trough the
tunnel and read it with the shipped tool ’reader’.

This setup requires different parameters to start vstt:

-p pop3 <- set the protocol to pop3
-r n <- receive data on port n
-t m <- send data to the peer at port m
-a 127.0.0.1 <- the address of the peer

For a tunnel we need two peers. In our case they are both on our local machine. This is why
we need both binarys because we need four FIFOs.

First, we start vstt in one shell and then we start vstt2 in another shell:

one$./vstt -p pop3 -r 10001 -t 10002 -a 127.0.0.1
init_pop3();
fork_childs();
connecting to peer ...
server: waiting for connection...connect(): Connection refused
connecting to peer ...
con establ
client: waiting for data from fifo...
connection established
waiting for data...

two$./vstt2 -p pop3 -r 10002 -t 10001 -a 127.0.0.1
init_pop3();
fork_childs();
connecting to peer ...
server: waiting for connection...connection established
waiting for data...
con establ
client: waiting for data from fifo...

Our tunnel is now established. Let us play around with it. In the tarball, you can also find
a tool called ’reader’. reader reads our data from a file we give pass it as a command line
parameter. In this case, we use it to read the data from the second output FIFO:

$./reader /tmp/.vstt_recvfpeer2

Okay, we now have a tunnel and a tool that prints all data we send from the first binary to the
second one. To test it all, we now write data into the sending FIFO of the first binary:

$ cat /etc/resolv.conf > .vstt_send2peer

If we now look at the output of the reader tool, we will see the content of /etc/resolv.conf that
was tunneled via POP3 between vstt and vstt2.

4 EXAMPLES 5

4.2 Example 2 (tunneling a SSH connection)

Now we want to tunnel a SSH connection between two hosts over port 80 (e.g. because a
firewall does not block HTTP but SSH). We use the protocol ’none’ because it’s fast, works
very well. ‘none’ creates nothing but a plain TCP-based tunnel.

Note: You need root access to bind ports less than 1024 under Unix(-like) systems.

This works as follows: Both systems start a vstt-tunnel they can communicate with. On the
SSH-server we connect our vstt-FIFO with the SSH service on port 22 (what can be done by
using the s2f tool – very simple).

On the Client machine we use the tool s2f, too (but in server mode). s2f communicates with
the local vstt endpoint via its FIFO. And then we connect to the s2f port using our local SSH
client. That’s all.

Okay, Let’s start.

Say that ‘eygo’ (192.168.2.20) is the machine with the SSH-Server and that ‘hikoki’ (192.168.2.21)
is the server with the SSH client.

On the first terminal (xterm or a console terminal or whatever), we start vstt. We receive data
on port 80 and send data to port 80 at the other vstt-endpoint.

eygo# ./vstt -p none -r 80 -t 80 -a 192.168.2.20
client: connecting to peer ...
server: waiting for connection...
none(or pop3 and so on)_client: connect(): Connection refused
none(or pop3 and so on)_client: connect(): Connection refused
none(or pop3 and so on)_client: connect(): Connection refused
none(or pop3 and so on)_client: connect(): Connection refused
none(or pop3 and so on)_client: connect(): Connection refused
...
...

On the second terminal we start s2f. It will listen on port 10003. We will connect to this port
with the ssh client if the tunnel works.

eygo# ./s2f -s -p 10003

IMPORTANT NOTE: If you don’t want to start s2f by hand, you can
also let vstt do that by using -c <port> [-s]
parameters! Instead of starting vstt+s2f, you could
start only vstt in this example:

vstt -p none -r 80 -t 80 -a 192.168.2.20 -c 10003 -s

Please note that the parameter ‘-s’ means to run as a server and to use the port given with -p
as the listen port instead as the port to connect to.

On eygo, we start vstt too:

eygo# ./vstt -p none -r 80 -t 80 -a 192.168.2.21
client: connecting to peer ...
server: waiting for connection...
wrapper_tcpserver: connection established => waiting for data...
==> con establ
client: waiting for data from fifo...

And we connect the vstt-FIFOs to the local SSH-Server running on Port 22 by s2f:

5 PROTOCOLS 6

eygo# ./s2f -p 22
connected.

IMPORTANT NOTE: You could alternativeley only start vstt one time without
calling s2f:
./vstt -p none -r 80 -t 80 -a 192.168.2.21 -c 22

And now, you can connect with SSH to the localhost port 10003 on the first machine (hikoki).

hikoki$ ssh user@127.0.0.1 -p 10003

5 Protocols

5.1 none

The ‘none’ protocol is used for a blank tunnel. For example: You sit behind a firewall that
only lets you use port 80 but you want to connect to your IRC-server at home. You can use the
‘none’ protocol to redirect the connection over port 80 and then bypass the firewall and enjoy
your IRC session.

5.2 POP3

This is a little bit more advanced. A POP3 tunnel is slow but it can hide your data in RETR-
requests. If you want to hide your data a little bit: use POP3 (or ICMP).

5.3 ICMP

If all TCP+UDP ports are blocked, an ICMP tunnel can work anyway. vstt sends your data
as payload in ICMP echo datagrams. vstt can re-send lost packets, re-calculates the checksum
to detect corrupted packets and can also send big packets from your applications within many
small ICMP packets that will be re-assembled by the peer.

6 Comments, Feedback

Please send me feedback, typos, bug reports and requests to my ‘steffenwendzel (at) gmx (dot)
net’ to make vstt better.

